Some Competitive Learning Methods

Bernd Fritzke
Systems Biophysics
Institute for Neural Computation
Ruhr-Universitat Bochum

Draft from April 5, 1997
(Some additions and refinements are planned for this document so it

will stay in the draft status still for a while.)

Comments are welcome.

Abstract

This report has the purpose of describing several algorithms from the literature all
related to competitive learning. A uniform terminology is used for all methods.
Moreover, identical examples are provided to allow a qualitative comparisons of
the methods. The on-line version® of this document contains hyperlinks to Java
implementations of several of the discussed methods.

Lhttp://www.neuroinformatik.ruhr-uni-bochum.de/ini/ VDM /research/gsn/JavaPaper/

Contents

1 Introduction
2 Common Properties & Notational Conventions
3 Goals of Competitive Learning
3.1 Error Minimization
3.2 Entropy Maximization
3.3 Feature Mapping
34 OtherGoals
4 Hard Competitive Learning
4.1 Batch Update: LBG
4.2 On-line Update: Basic Algorithm
4.3 Constant Learning Rate
4.4 k-meanso i i e e e
4.5 Exponentially Decaying Learning Rate
5 SCL w/o Fixed Network Dimensionality
51 NeuralGas
5.2 Competitive Hebbian Learning
5.3 Neural Gas plus Competitive Hebbian Learning
5.4 Growing Neural Gas
5.5 Other Methods
6 SCL with Fixed Network Dimensionality
6.1 Self-organizing Feature Map
6.2 Growing Cell Structures
6.3 Growing Grid
6.4 Other Methods
7 Quantitative Results (t.b.d.)
8 Discussion (t.b.d.)
References

10
10
11
13
14
16

20
20
21
24
25
29

30
30
31
34
39

40

41

41

Chapter 1

Introduction

In the area of competitive learning a rather large number of models exist which
have similar goals but differ considerably in the way they work. A common goal
of those algorithms is to distribute a certain number of vectors in a possibly high-
dimensional space. The distribution of these vectors should reflect (in one of several
possible ways) the probability distribution of the input signals which in general is
not given explicitly but only through sample vectors.

In this report we review several methods related to competitive learning. A
common terminology is used to make a comparison of the methods easy. Moreover,
software implementations of the methods are provided allowing experiments with
different data distributions and observation of the learning process. Thanks to the
Java programming language the implementations run on a large number of platforms
without the need of compilation or local adaptation.

The report is structured as follows: In chapter 2 the basic terminology is in-
troduced and properties shared by all models are outlined. Chapter 3 discusses
possible goals for competitive learning systems. Chapter 4 is concerned with hard
competitive learning, i.e. models where only the winner for the given input signal
is adapted. Chapters 5 and 6 describe soft competitive learning. These models are
characterized by adapting in addition to the winner also some other units of the
network. Chapter 5 is concerned with models where the network has no fixed di-
mensionality. Chapter 6 describes models which do have a fixed dimensionality and
may be used for data visualization, since they define a mapping from the usually
high-dimensional input space to the low-dimensional network structure. The last
two chapters still have to be written and will contain quantitative results and a
discussion.

Chapter 2

Common Properties and
Notational Conventions

The models described in this report share several architectural properties which are
described in this chapter. For simplicity, we will refer to any of these models as
network even if the model does not belong to what is usually understood as “neural
network”.

Each network consists of a set of N units:

A:{Cl, Coy v vny CN}. (21)
Each unit ¢ has an associated reference vector
w. € R" (2.2)

indicating its position or receptive field center in input space.
Between the units of the network there exists a (possibly empty) set

CCAxA (2.3)
of neighborhood connections which are unweighted and symmetric:
(i,4) € C <= (j4,1) € C. (2.4)

These connections have nothing to do with the weighted connections found, e.g., in

multi-layer perceptrons (Rumelhart et al., 1986). They are used in some methods to

extend the adaptation of the winner (see below) to some of its topological neighbors.
For a unit ¢ we denote with N, the set of its direct topological neighbors:

N.={i € Al(c,i) € C}. (2.5)

The n-dimensional input signals are assumed to be generated either according
to a continuous probability density function

p(€),€ €R" (2.6)
or from a finite training data set

D={&,...,ém} & € R (2.7)

For a given input signal € the winner s(§¢) among the units in A is defined as
the unit with the nearest reference vector

s(&) = arg min_ ¢ 4]|€& — we|. (2.8)

whereby | - || denotes the Euclidean vector norm. In case of a tie among several
units one of them is chosen to be the winner by throwing a fair dice. In some cases
we will denote the current winner simply by s (omitting the dependency on &). If
not only the winner but also the second-nearest unit or even more distant units
are of interest, we denote with s; the é-nearest unit (s; is the winner, sy is the
second-nearest unit, etc.).

Two fundamental and closely related concepts from computational geometry are
important to understand in this context. These are the Voronoi Tessellation and
the Delaunay Triangulation:

Given a set of vectors wy, ..., wx in R" (see figure 2.1 a), the Voronoi Region
V; of a particular vector w; is defined as the set of all points in R™ for which w; is
the nearest vector:

Vi={{ €R"|i = arg minje{l,...,N}||£ - Wj”}- (2.9)

In order for each data point to be associated to exactly one Voronoi region we
define (as previously done for the winner) that in case of a tie the corresponding
point is mapped at random to one of the nearest reference vectors. Alternatively,
one could postulate general positions for all data points and reference vectors in
which case a tie would have zero probability.

It is known, that each Voronoi region V; is a convex area, i.e.

(1€Ving e Vi) = (& +a(§y—&1) € Vi) (Va,0 <a<1). (2.10)

The partition of R™ formed by all Voronoi polygons is called Voronoi Tessellation
or Dirichlet Tessellation (see figure 2.1 b). Efficient algorithms to compute it are
only known for two-dimensional data sets (Preparata and Shamos, 1990). The
concept itself, however, is applicable to spaces of arbitrarily high dimensions.

If one connects all pairs of points for which the respective Voronoi regions share
an edge (an (n — 1)-dimensional hyperface for spaces of dimension n) one gets
the Delaunay Triangulation (see figure 2.1 ¢). This triangulation is special among
all possible triangulation in various respects. It is, e.g., the only triangulation in
which the circumcircle of each triangle contains no other point from the original
point set than the vertices of this triangle. Moreover, the Delaunay triangulation
has been shown to be optimal for function interpolation (Omohundro, 1990). The
competitive Hebbian learning method (see section 5.2) generates a subgraph of the
Delaunay triangulation which is limited to those areas of the input space where
data is found.

For convenience we define the Voronoi Region of a unit c,c € A, as the Voronoi
region of its reference vector:

Ve ={£ € R"[s(§) = c}. (2.11)

In the case of a finite input data set D we denote for a unit ¢ with the term
Voronoi Set the subset R, of D for which ¢ is the winner (see figure 2.2):

Re={£ € D[s(§) = c}- (2.12)

6 CHAPTER 2. COMMON PROPERTIES & NOTATIONAL CONVENTIONS

c)

Figure 2.1: a) Point set in R?, b) corresponding Voronoi tessellation, ¢) correspond-
ing Delaunay triangulation.

a) data set D b) Voronoi sets

Figure 2.2: An input data set D is shown (a) and the partition of D into Voronoi
sets for a particular set of reference vectors (b). Each Voronoi set contains the data
points within the corresponding Voronoi field.

Chapter 3

Goals of Competitive
Learning

A number of different and often mutually exclusive goals can be set for competitive
learning systems. In the following some of these goals are discussed.

3.1 Error Minimization

A frequent goal is the minimization of the expected quantization (or distortion)
error. In the case of a continuous input signal distribution p(£) this amounts to
finding values for the reference vectors we,c € A such that the error

B(p(),A) =Y /V 1€ — we|*p(€)de (3.1)

ceA

is minimized (V, is the Voronoi region of unit c).

Correspondingly, in the case of a finite data set D the error

E(D,A)=1/ID|) > €~ wel? (3.2)

ceEAEER,

has to be minimized with R. being the Voronoi set of the unit c.

A typical application where error minimization is important is vector quantiza-
tion (Linde et al., 1980; Gray, 1984). In vector quantization data is transmitted
over limited bandwidth communication channels by transmitting for each data vec-
tor only the index of the nearest reference vector. The set of reference vectors
(which is called codebook in this context) is assumed to be known both to sender
and receiver. Therefore, the receiver can use the transmitted indexes to retrieve
the corresponding reference vector. There is an information loss in this case which
is equal to the distance of current data vector and nearest reference vector. The
expectation value of this error is described by equations (3.1) and (3.2). In par-
ticular if the data distribution is clustered (contains subregions of high probability
density), dramatic compression rates can be achieved with vector quantization with
relatively little distortion.

8 CHAPTER 3. GOALS OF COMPETITIVE LEARNING

3.2 Entropy Maximization

Sometimes the reference vectors should be distributed such that each reference
vector has the same chance to be winner for a randomly generated input signal &:

P(s(&¢) =c) = (Ve e A). (3.3)

1

|A|
If we interpret the generation of an input signal and the subsequent mapping
onto the nearest unit in A as random experiment which assigns a value x € A to

the random variable X, then (3.3) is equivalent to maximizing the entropy

1
H(X) == 3 P(2)log(P(2)) = E(log(=—)), (3.4)
z€EA P(CU)

with E(-) being the expectation operator.

If the data is generated from a continuous probability distribution p(€), then

(3.3) is equivalent to
/ pEO)dE= = (vee A). (3.5)
V. Al

In the case of a finite data set D (3.3) corresponds to the situation where each
Voronoi set R. contains (up to discretization effects) the same number of data
vectors: Rel 1

C
Dl = A (Ve e A). (3.6)

An advantage of choosing reference vectors such as to maximize entropy is the
inherent robustness of the resulting system. The removal (or “failure”) of any
reference vector affects only a limited fraction of the data.

Entropy maximization and error minimization can in general not be achieved
simultaneously. In particular if the data distribution is highly non-uniform both
goals differ considerably. Consider, e.g., a signal distribution p(£) where 50 percent
of the input signals come from a very small (point-like) region of the input space,
whereas the other fifty percent are uniformly distributed within a huge hypercube.
To maximize entropy half of the reference vectors have to be positioned in each
region. To minimize quantization error however, only one single vector should be
positioned in the point-like region (reducing the quantization error for the signals
there basically to zero) and all others should be uniformly distributed within the
hypercube.

3.3 Feature Mapping

With some network architecturesit is possible to map high-dimensional input signals
onto a lower-dimensional structure in such a way, that some similarity relations
present in the original data are still present after the mapping. This has been
denoted feature mapping and can be useful for data visualization. A prerequisite
for this is that the network used has a fixed dimensionality. This is the case, e.g.,
for the self-organizing feature map and the other methods discussed in section 6 of
this report.

A related question is, how topology-preserving is the mapping from the input
data space onto the discrete network structure, i.e. how well are similarities pre-
served? Several quantitative measures have been proposed to evaluate this like
the topographic product (Bauer and Pawelzik, 1992) or the topographic function
(Villmann et al., 1994).

3.4. OTHER GOALS 9

3.4 Other Goals

Competitive learning methods can also be used for density estimation, i.e. for the
generation of an estimate for the unknown probability density p(€) of the input
signals.

Another possible goal is clustering, where a partition of the data into subgroups
or clusters is sought, such that the distance of data items within the same cluster
(intra-cluster variance) is small and the distance of data items stemming from differ-
ent clusters (inter-cluster variance) is large. Many different flavors of the clustering
problem exist depending, e.g., on whether the number of clusters is pre-defined or
should be a result of the clustering process. A comprehensive overview of clustering
methods is given by Jain and Dubes (1988).

Combinations of competitive learning methods with supervised learning ap-
proaches are feasible, too. One possibility are radial basis function networks (RBFN)
where competitive learning is used to position the radial centers (Moody and Darken,
1989; Fritzke, 1994b). Moreover, local linear maps have been combined with com-
petitive learning methods (Walter et al., 1990; Martinetz et al., 1989, 1993; Fritzke,
1995b). In the simplest case for each Voronoi region one linear model is used to
describe the input/output relationship of the data within the Voronoi region.

Chapter 4

Hard Competitive Learning

Hard competitive learning (a.k.a. winner-take-all learning) comprises methods where
each input signal only determines the adaptation of one unit, the winner. Different
specific methods can be obtained by performing either batch or on-line update. In
batch methods (e.g. LBG) all possible input signals (which must come from a finite
set in this case) are evaluated first before any adaptations are done. This is iterated
a number of times. On-line methods, on the other hand (e.g. k-means), perform
an update directly after each input signal. Among the on-line methods variants
with constant adaptation rate can be distinguished from variants with decreasing
adaptation rates of different kinds.

A general problem occurring with hard competitive learning is the possible ex-
istence of “dead units”. These are units which — perhaps due to inappropriate
initialization — are never winner for an input signal and, therefore, keep their posi-
tion indefinitely. Those units do not contribute to whatever the networks purpose
is (e.g. error minimization) and must be considered harmful since they are unused
network resources. A common way to avoid dead units is to use distinct sample
vectors according to p(€) to initialize the reference vectors.

The following problem, however, remains: if the reference vectors are initialized
randomly according to p(£€), then their expected initial local density is proportional
to p(€). This may be rather suboptimal for certain goals. For example, if the goal is
error minimization and p(&) is highly non-uniform, then it is better to undersample
the regions with high probability density (i.e., use less reference vectors there than
dictated by p(€)) and oversample the other regions. One possibility to adapt the
distribution of the reference vectors to a specific goal is the use of local statistical
measures for directing insertions and possibly also deletion of units (see sections
5.4, 6.2 and 6.3).

Another problem of hard competitive learning is that different random initial-
izations may lead to very different results. The purely local adaptations may not
be able to get the system out of the poor local minimum where it was started.
One way to cope with this problem is to change the “winner-take-all” approach of
hard competitive learning to the “winner-take-most” approach of soft competitive
learning. In this case not only the winner but also some other units are adapted
(see chapters 5 and 6). In general this decreases the dependency on initialization.

4.1 Batch Update: LBG

The LBG (or generalized Lloyd) algorithm (Linde et al., 1980; Forgy, 1965; Lloyd,
1957) works by repeatedly moving all reference vectors to the arithmetic mean of
their Voronoi sets. The theoretical foundation for this is that it can be shown

10

4.2. ON-LINE UPDATE: BASIC ALGORITHM 11

(Gray, 1992) that a necessary condition for a set of reference vectors {w.|c € A} to
minimize the distortion error

ED,A)=1/D|Y D IIE—well. (4.1)

ccAEER .

is that each reference vector w,. fulfills the centroid condition. In the case of a finite
set of input signals and the use of the Euclidean distance measure the centroid

condition reduces to 1
We=122 > & (4.2)
|RC| €€Rc

whereby R, is the Voronoi set of unit c.
The complete LBG algorithm is the following:

1. Initialize the set A to contain N (N < M) units ¢;
AZ{Cl, C2y vuny CN} (4.3)

with reference vectors w,, € R" chosen randomly (but mutually different)
from the finite data set D.

2. Compute for each unit ¢ € A its Voronoi set R..

3. Move the reference vector of each unit to the mean of its Voronoi set:

W, = ! Y & (4.4)

| Cl £€Rc

4. If in step 3 any of the w, did change, continue with step 2.

5. Return the current set of reference vectors.

The steps 2 and 3 together form a so-called Lloyd iteration, which is guaranteed
to decrease the distortion error or leave it at least unchanged. LBG is guaranteed to
converge in a finite number of Lloyd iterations to a local minimum of the distortion
error function (see figure 4.1 for an example).

An extension of LBG, called LBG-U (Fritzke, 1997), is often able to improve on
the local minima found by LBG. LBG-U performs non-local moves of single reference
vectors which do not contribute much to error reduction (and are, therefore, not
useful, thus the “U” in LBG-U) to locations where large quantization error does
occur. Thereafter, normal LBG is used to find the nearest local minimum of the
distortion error function. This is iterated as long as the LBG-generated local minima
improve. LBG-U requires a finite data set, too, and is guaranteed to converge in a
finite number of steps.

4.2 On-line Update: Basic Algorithm

In some situations the data set D is so huge that batch methods become impractical.
In other cases the input data comes as a continuous stream of unlimited length which
makes it completely impossible to apply batch methods. A resort is on-line update,
which can be described as follows:

1. Initialize the set A to contain N units ¢;
AZ{Cl, C2y «ny CN} (4.5)

with reference vectors w,, € R" chosen randomly according to p(&).

12 CHAPTER 4. HARD COMPETITIVE LEARNING

a) data set D

g) 5 Lloyd iterations h) 6 Lloyd iterations i) 7 Lloyd iterations

Figure 4.1: LBG simulation. a) The data set D consisting of 100 data items. b) 20
reference vectors have been initialized randomly from points in D. The correspond-
ing Voronoi tessellation is shown. c-1) The positions of the reference vectors after
the indicated number of Lloyd iterations. Reference vectors which did not move
during the previous Lloyd iteration are shown in black. In this simulation LBG has
converged after 7 Lloyd iterations.

4.3. CONSTANT LEARNING RATE 13

2. Generate at random an input signal € according to p(£).

3. Determine the winner s = s(§):

s(&) = arg min ¢ 4[|§ — W/l (4.6)
4. Adapt the reference vector of the winner towards &:

Aw, = € (€ — wy). (4.7)

5. Unless the maximum number of steps is reached continue with step 2.

Thereby, the learning rate € determines the extent to which the winner is adapted
towards the input signal. Depending on whether e stays constant or decays over
time, several different methods are possible some of which are described in the
following.

4.3 Constant Learning Rate
If the learning rate is constant, i.e.

e=¢p,(0< e <1), (4.8)

then the value of each reference vector w. represents an exponentially decaying
average of those input signals for which the unit ¢ has been winner. To see this,
let £5,&5,...,&; be the sequence of input signals for which ¢ is the winner. The
sequence of successive values taken by w. can then be written as

w.(0) = (random signal according to p(&))
we(l) = we(0) + e (€5 — we(0))
(1 — €e0)we(0) + €0éy (4.9)
we(2) = (1—e)we(l) + €0&3
(1= €0)*We(0) + (1 — e0) o€ + o0& (4.10)
we(t) = (1—e)we(t —1)+ ek
= (1—¢)'We(0)+e Z(l — o)t g (4.11)

From (4.8) and (4.11) it is obvious that the influence of past input signals decays
exponentially fast with the number of further input signals for which ¢ is winner
(see also figure 4.2). The most recent input signal, however, always determines
a fraction ¢ of the current value of w.. This has two consequences. First, such a
system stays adaptive and is therefore in principle able to follow also non-stationary
signal distribution p(&€). Second (and for the same reason), there is no convergence.
Even after a large number of input signals the current input signal can cause a
considerable change of the reference vector of the winner. A typical behavior of such
a system in case of a stationary signal distribution is the following: the reference
vectors drift from their initial positions to quasi-stationary positions where they

14 CHAPTER 4. HARD COMPETITIVE LEARNING

1 mrrrr II T T LI B L L II T T LI DL LI t
€ = 0.5 —
=01 -—-

0.1 € =0.01 ---- 7
€ = 0.001 ---mmev I
0.01 o =
) N o -
\ . ;
\ \\
\ N -
0.0001 \ =
- \\ \‘ -
\ \
\ “ T
1e-05 \ \ =
o \\ \‘ -
\ “ . -
16—06 Ll L1l II\| L L L L Ll I'I L L Ll I“l L1
1 10 100 1000 10000

Figure 4.2: Influence of an input signal £ on the vector of its winner s as a function
of the number of following input signals for which s is winner (including &). Results
for different constant adaptation rates are shown. The respective section with the
z-axis indicates how many signals are needed until the influence of £ is below 1076.
For example if the learning rate ¢ is set to 0.5, about 10 additional signals (the
section with the z-axis is near 11) are needed to let this happen.

start to wander around a dynamic equilibrium. Better quasi-stationary positions in
terms of mean square error are achieved with smaller learning rates. In this case,
however, the system also needs more adaptation steps to reach the quasi-stationary
positions.

If the distribution is non-stationary then the information about the non-station-
arity (how rapidly does the distribution change) can be used to set an appropriate
learning rate. For rapidly changing distributions relatively large learning rates
should be used and vice versa. Figure 4.3 shows some stages of a simulation for a
simple ring-shaped data distribution. Figure 4.4 displays the final results after 40000
adaptation steps for three other distribution. In both cases a constant learning rate
€0 = 0.05 was used.

4.4 k-means

Instead of having a constant learning rate, we can also decrease it over time. A
particularly interesting way of doing so is to have a separate learning rate for each
unit ¢ € A and to set it according to the harmonic series:

“(t) = . (4.12)

Thereby, the time parameter ¢ stands for the number of input signals for which
this particular unit has been winner so far. This algorithm is known as k-means
(MacQueen, 1967), which is a rather appropriate name, because each reference
vector w.(t) is always the exact arithmetic mean of the input signals £7,&5,...,&;
it has been winner for so far. The sequence of successive values of w,. is the following:

4.4. K-MEANS 15

L Be . S
.‘12.’ " . o‘: » 1’0: o o . :.: :
P £ e o, < e
$ e » -
. ‘e . -
. D‘g‘ ..:'
* s
) S,
* . } ». . §e . } .. » 8
. .
. se ¥ . ‘e "
. .
. o . e ®
a) 0 signals b) 100 signals
- -
- ”" ;‘: . % g’ ’::ﬂ:: .
.. - e -
"Q‘i‘..‘ . ""“ . ‘.?‘ * '.‘ C‘"’

e) 2500 signals f) 10000 signals g) 40000 signals h) Voronoi regions

Figure 4.3: Hard competitive learning simulation sequence for a ring-shaped uni-
form probability distribution. A constant adaptation rate was used. a) Initial state.
b-f) Intermediate states. g) Final state. h) Voronoi tessellation corresponding to
the final state.

Sevavsagvesngaenna) .
® 0 s%% sesca®aer o .
0% 0 0 0%35 000000, .. . * e o 0, °
00 0 avv0 0000000y 0 . ® & e I o
Seae 2t e . X =) $8%4s,
. "g e o o ®e?® o
.9 . » . (] [°
Sge e . * iaie.® e® 00,
et e cole
S sen i’: .Q‘ . ‘..
L]
&% :‘ o o b .
e e 00 o *n?
o . g e .
.e " _ee® ® o
. .
. . o0 .
. .!‘.‘ . L] ° L]
. Pete, oo ® ° 0 o
.,'6 oin ® ’. .« 0
' . e o ° .
. . . . ’l.:. .
. . e
a) b) ¢)

Figure 4.4: Hard competitive learning simulation results after 40000 input signals
for three different probability distributions. A constant learning rate was used. a)
This distribution is uniform within both shaded areas. The probability density,
however, in the upper shaded area is 10 times as high as in the lower one. b) The
distribution is uniform in the shaded area. ¢) In this distribution each of the 11
circles indicates the standard deviation of a Gaussian kernel which was used to
generate the data. All Gaussian kernels have the same a priori probability.

16 CHAPTER 4. HARD COMPETITIVE LEARNING

w.(0) = (random signal according to p(&))
we(l) = we(0) + €(1)(&5 — we(0))
31 (4.13)
we(2) = we(l)+€(2)(&3 —we(1))
_ Sts (4.14)
2
we(t) = we(t—1)+e(t)(& — we(t — 1))
_ ﬁ+£§,+“'£: (4.15)
One should note that the set of signals £7,€5,...,&; for which a particular unit

¢ has been winner may contain elements which lie outside the current Voronoi region
of ¢. The reason is that each adaptation of w. changes the borders of the Voronoi
region V.. Therefore, although w,(t) represents the arithmetic mean of the signals
it has been winner for, at time ¢ some of these signal may well lie in Voronoi regions
belonging to other units.

Another important point about k-means is, that there is no strict convergence
(as is present e.g. in LBG), the reason being that the sum of the harmonic series
diverges:

-1
nll)rr;o 2_; 7 =00 (4.16)

Because of this divergence, even after a large number of input signals and cor-
respondingly low values of the learning rate e(t) arbitrarily large modifications of
each input vector may occur in principal. Such large modification, however, are
very improbable and in simulations where the signal distribution is stationary the
reference vectors usually rather quickly take on values which are not much changed
in the following. In fact, it has been shown that k-means does converge asymptot-
ically to a configuration where each reference vector w,. is positioned such that it
coincides with the expectation value

E(€l€ € Vi) = /V Ep(e)de (417)

of its Voronoi region V., (MacQueen, 1965). One can note that (4.17) is the con-
tinuous variant of the centroid condition (4.2). Figure 4.5 shows some stages of a
simulation for a simple ring-shaped data distribution. Figure 4.6 displays the final
results after 40000 adaptation steps for three other distribution.

4.5 Exponentially Decaying Learning Rate

Another possibility for a decaying adaptation rate has been proposed by Ritter et al.
(1991) in the context of self-organizing maps. They propose an exponential decay
according to

e(t) = ei(ef/€;)/ tmox (4.18)

4.5. EXPONENTIALLY DECAYING LEARNING RATE 17

e

a) 0 signals

.
.
.. . 0
. ‘i
. o .
!%“t . *
s te .
. . &
., r.
.. .
. & .,
L »
..

e) 2500 signals f) 10000 signals g) 40000 signals h) Voronoi regions

Figure 4.5: k-means simulation sequence for a ring-shaped uniform probability
distribution. a) Initial state. b-f) Intermediate states. g) Final state. h) Voronoi
tessellation corresponding to the final state. The final distribtion of the reference
vectors still reflects the clusters present in the initial state (see in particular the
region of higher vector density at the lower left).

‘.-it‘.". Saa ;"0"‘:.(.‘, i 030
a v S e v 0000 % . See
S0 e 00 et o o . . oo o°
Pe® 80 504000°% 00040°% L P . i a4 o
s e S ey o’ o @#d0”
.. . . ° o o se
! 0P e, . * "o o
. % 0.)
e . . ' s "o ne R
., .)
.. .) .0 o L4
. [y
" “‘; ." -]
‘. 0% “ ."i L4
N .“Oi‘ en0®
%50
. '.'6% 4 e * o
fes* cw, o * .. .
. . e -
.y *" ¢
. = » o e ° 4
. . . *e o
. . - °
a) b) ¢)

Figure 4.6: k-means simulation results after 40000 input signals for three different
probability distributions (described in the caption of figure 4.4).

18 CHAPTER 4. HARD COMPETITIVE LEARNING

1 T T T T . : I

(t): exponential decay ——
g(t): harmonic series -----

0.1 F o eres — |

0.01 ¢

0.001

0.0001

1e-05

1e-06

1e_o7 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000

Figure 4.7: Comparison of the exponentially decaying learning function f(t) =
€i(es/€;)t/tm=x and the harmonic series g(t) = 1/t for a particular set of parameters
(e; = 1.0, ¢ = 1E-5, tmax = 40000). The displayed difference between the two
learning rates can be interpreted as noise which in the case of an exponentially
decaying learning rate is introduced to the system and then gradually removed.

whereby ¢; and €7 are initial and final values of the learning rate and tyax is the
total number of adaptation steps which is taken.

In figure 4.7 this kind of learning rate is compared to the harmonic series for
a specific choice of parameters. In particular at the beginning of the simulation
the exponentially decaying learning rate is considerably larger than that dictated
by the harmonic series. This can be interpreted as introducing noise to the system
which is then gradually removed and, therefore, suggests a relationship to simulated
annealing techniques (Kirkpatrick et al., 1983). Simulated annealing gives a system
the ability to escape from poor local minima to which it might have been initialized.
Preliminary experiments comparing k-means and hard competitive learning with a
learning rate according to (4.18) indicate that the latter method is less susceptible
to poor initialization and for many data distributions gives lower mean square error.
Also small constant learning rates usually give better results than k-means. Only
in the special case that only one reference vector exists (|A| = 1) it is completely
impossible to beat k-means on average, since in this case it realizes the optimal
estimator (the mean of all samples occurred so far). These observations are in
complete agreement with Darken and Moody (1990) who investigated k-means and
a number of different learning rate schedules like constant learning rates and a
learning rate which is the square root of the rate used by k-means (e(t) = 1/1/(t)).
Their results indicate that if & is larger than 1, then k-means is inferior to the other
learning rate schedules. In the examples they give the difference in distortion error
is up to two orders of magnitude.

Figure 4.8 shows some stages of a simulation for a simple ring-shaped data
distribution. Figure 4.9 displays the final results after 40000 adaptation steps for
three other distribution. The parameters used in both examples were: €; = 0.5, €7 =
0.0005 and tmax = 40000.

4.5. EXPONENTIALLY DECAYING LEARNING RATE 19

a) 0 signals

. W
..Q'.C. e
* .
@0 80

s
n, .
F .y e 9
e .t
oo
e e

L . .

e) 2500 signals f) 10000 signals

.

g) 40000 signals h) Voronoi regions

Figure 4.8: Hard competitive learning simulation sequence for a ring-shaped uni-
form probability distribution. An exponentially decaying learning rate was used.
a) Initial state. b-f) Intermediate states. g) Final state. h) Voronoi tessellation
corresponding to the final state.

e L i L o .
P L . .
.*',!o ® 8 o0 e, 00, Ses .) . e®e 0 ®
:.*l*§nd“OOQ=!‘it %t) g ® o f® 0% o
Peas?® .: e ..“. . o.:.o.‘o
Sa,tr 0,000 400 . o L ele
Sees . i R LN e%s
.4 P “%,0 LA
- . e .. o & a o
e = .. L4 .
.‘, '.‘i'.; 0.,3 .
L e SR o 4%
. a4t e g0 e o o
. e
‘Q": e . o8 @
. ‘3‘ K X . .
. e o ® ° ® .
. ' o o
- .ty
a) b) c)

Figure 4.9: Hard competitive learning simulation results after 40000 input signals
for three different probability distributions (described in the caption of figure 4.4).
An exponentially decaying learning rate was used.

Chapter 5

Soft Competitive Learning
without Fixed Network
Dimensionality

In this chapter some methods from the area of soft competitive learning are de-
scribed. They have in common, in contrast to the models in the following chapter,
that no topology of a fized dimensionality is imposed on the network. In one case
there is no topology at all (neural gas). In other cases the dimensionality of the
network depends on the local dimensionality of the data and may vary within the
input space.

5.1 Neural Gas

The neural gas algorithm (Martinetz and Schulten, 1991) sorts for each input signal
& the units of the network according to the distance of their reference vectors to .
Based on this “rank order” a certain number of units is adapted. Both the number
of adapted units and the adaptation strength are decreased according to a fixed
schedule. The complete neural gas algorithm is the following:

1. Initialize the set A to contain N units ¢;
AZ{Cl, C2y vuny CN} (5.1)

with reference vectors w,, € R" chosen randomly according to p(&).
Initialize the time parameter ¢:
t=0. (5.2)

2. Generate at random an input signal € according to p(£).

3. Order all elements of A according to their distance to &, i.e., find the sequence
of indices (ég, 41, ..., in—1) such that w;, is the reference vector closest to
&, w;, is the reference vector second-closest to & and w;,, k=0,..., N -1
is the reference vector such that k vectors w; exist with ||€ — w;|| < &€ —
wy||. Following Martinetz et al. (1993) we denote with k;(€,.4) the number &
associated with w,.

4. Adapt the reference vectors according to

Aw; = €(t) - ha(ki(§, A)) - (§ — W) (5.3)

20

5.2. COMPETITIVE HEBBIAN LEARNING 21

with the following time-dependencies:

A(t) = Ni(Ap/ i) P, (5.4)
e(t) = eiles /€)=, (5.5)
ha(k) = exp(—k/A(t)). (5.6)

5. Increase the time parameter ¢:

t=t+1. (5.7)

6. If t < tpax continue with step 2

For the time-dependent parameters suitable initial values (\;, €;) and final values
(Af, €7) have to be chosen. Figure 5.1 shows some stages of a simulation for a
simple ring-shaped data distribution. Figure 5.2 displays the final results after 40000
adaptation steps for three other distribution. Following Martinetz et al. (1993) we
used the following parameters: A\; = 10, Ay = 0.01, ¢; = 0.5, ¢ = 0.005, tmax =
40000.

5.2 Competitive Hebbian Learning

This method (Martinetz and Schulten, 1991; Martinetz, 1993) is usually not used
on its own but in conjunction with other methods (see sections 5.3 and 5.4). It is,
however, instructive to study competitive Hebbian learning on its own. The method
does not change reference vectors at all (which could be interpreted as having a zero
learning rate). It only generates a number of neighborhood edges between the units
of the network. It was proved by Martinetz (1993) that the so generated graph
is optimally topology-preserving in a very general sense. In particular each edge
of this graph belongs to the Delaunay triangulation corresponding to the given set
of reference vectors. The complete competitive Hebbian learning algorithm is the
following:

1. Initialize the set A to contain N units ¢;
.AZ{Cl, C2,y ..., CN} (58)

with reference vectors w,, € R" chosen randomly according to p(&).
Initialize the connection set C , C C A x A, to the empty set:

C=0. (5.9)
2. Generate at random an input signal & according to p(€).
3. Determine units s; and sz (s1,82 € A) such that
s1 = arg min ¢ 4||& — we|| (5.10)

and
82 = arg min ¢ 4\ (5,3 1€ — wel- (5.11)

4. If a connection between s; and ss does not exist already, create it:

C=CU {(31, 82)}. (5.12)

5. Continue with step 2 unless the maximum number of signals is reached.

Figure 5.3 shows some stages of a simulation for a simple ring-shaped data distri-
bution. Figure 5.4 displays the final results after 40000 adaptation steps for three
other distribution.

22 CHAPTER 5. SCL W/O FIXED NETWORK DIMENSIONALITY

Z/
.
////////i/////////////
////////

a) 0 signals b) 100 signals

s e Y%
. . e, y %
.y . . »e
e . ® . .
- e e L .
. . . ! .
% s L. .
* . . % s .
. e .
s . e .
. = o'
. . .
% o * «%s o
. st . 0y, 6e*
e e . o . .

e) 2500 signals f) 10000 signals g) 40000 signals h) Voronoi regions

Figure 5.1: Neural gas simulation sequence for a ring-shaped uniform probability
distribution. a) Initial state. b-f) Intermediate states. g) Final state. h) Voronoi
tessellation corresponding to the final state. Initially strong neighborhood interac-
tion leads to a clustering of the reference vectors which then relaxes until at the
end a rather even distribution of reference vectors is found.

48,7 0% 8 o 40,0, 2. .
S e g0, . . . o et o ® o o 0
o "0 sTe 008 80 007, S .o L X
« ' Q"""‘Q’ .t‘. 08 ine
o'’ 20, . [} 0g 09 ®
ae " .« " 'y ¥ 0 o ®
.o e o0 g °
. . , o0
. . LIRS N W .
» e » o .
. ¥ . o . . °
o, . taw " e ¥ o
. e .. 0% o
. e «*
- . * .
Ce, o A « *
. e’ o ° X
. ® ®ie .t o
. g os e Sl
. 4 8 2 4 e s 4 4 .. N e
. .. LY °
. .
a5 . ' 4 o %
a) b) ¢)

Figure 5.2: Neural gas simulation results after 40000 input signals for three different
probability distributions (described in the caption of figure 4.4).

5.2. COMPETITIVE HEBBIAN LEARNING 23

c) 300 signals

T

e) 2500 signals f) 10000 signals g) 40000 signals h) Voronoi regions

Figure 5.3: Competitive Hebbian learning simulation sequence for a ring-shaped
uniform probability distribution. a) Initial state. b-f) Intermediate states. g)
Final state. h) Voronoi tessellation corresponding to the final state. Obviously, the
method is sensitive to initialization since the initial positions are always equal to
the final positions.

A A e A
AR
iﬁi’
2\

e

)

Figure 5.4: Competitive Hebbian learning simulation results after 40000 input sig-

nals for three different probability distributions (described in the caption of figure
4.4).

=

V7

.

-/

24 CHAPTER 5. SCL W/O FIXED NETWORK DIMENSIONALITY

5.3 Neural Gas plus Competitive Hebbian Learn-
ing

This method (Martinetz and Schulten, 1991, 1994) is a straight-forward superpo-
sition of neural gas and competitive Hebbian learning. It is sometimes denoted
as “topology-representing networks” (Martinetz and Schulten, 1994). This term,
however, is rather general and would apply also to the growing neural gas model
described later.

At each adaptation step a connection between the winner and the second-nearest
unit is created (this is competitive Hebbian learning). Since the reference vectors are
adapted according to the neural gas method a mechanism is needed to remove edges
which are not valid anymore. This is done by a local edge aging mechanism. The
complete neural gas with competitive Hebbian learning algorithm is the following:

1. Initialize the set A to contain N units ¢;
AZ{Cl, C2y vuny CN} (5.13)

with reference vectors w,, € R" chosen randomly according to p(&).

Initialize the connection set C , C C A x A, to the empty set:

c=0. (5.14)

Initialize the time parameter ¢:
t=0. (5.15)

2. Generate at random an input signal € according to p(£).

3. Order all elements of A according to their distance to &, i.e., find the sequence
of indices (ég, 41, ..., in—1) such that w;, is the reference vector closest to
&, w;, is the reference vector second-closest to & and w;, , k=0, ..., N —1
is the reference vector such that k vectors w; exist with ||€ — w;|| < &€ —
wy||. Following Martinetz et al. (1993) we denote with k;(&,.A) the number &
associated with w,.

4. Adapt the reference vectors according to
Aw; = €(t) - ha(ki(&, A)) - (§ —wy) (5.16)

with the following time-dependencies:

() = XiAg/X)/tme, (5.17)
e(t) = ei(eg /)P, (5.18)
ha(k) = exp(—k/A(£)). (5.19)

5. If it does not exist already, create a connection between iy and ¢;:
C =CUA{(dg,i1)}- (5.20)
Set the age of the connection between iy and i1 to zero (“refresh” the edge):

age(;y.i;) = 0- (5.21)

5.4. GROWING NEURAL GAS 25

6. Increment the age of all edges emanating from ¢y:
age(iy,i) = aLe(iq,i) T 1 (Vi € Nyy). (5.22)
Thereby, N, is the set of direct topological neighbors of ¢ (see equation 2.5).
7. Remove edges with an age larger than the maximal age T'(t) whereby

T(t) = Ti(T§/T;)" e (5.23)

8. Increase the time parameter ¢:

t=t+1. (5.24)

9. If t < tmax continue with step 2.

For the time-dependent parameters suitable initial values (\;, €;, T;) and final
values (A¢, €, Tf) have to be chosen.

Figure 5.5 shows some stages of a simulation for a simple ring-shaped data
distribution. Figure 5.6 displays the final results after 40000 adaptation steps for
three other distribution. Following Martinetz et al. (1993) we used the following
parameters: A; = 10, Ay = 0.01, ¢; = 0.5, € = 0.005, tmax = 40000, T; = 20, Ty =
200. The network size N was set to 100.

5.4 Growing Neural Gas

This method (Fritzke, 1994b, 1995a) is different from the previously described
models since the number of units is changed (mostly increased) during the self-
organization process. The growth mechanism from the earlier proposed growing
cell structures (Fritzke, 1994a) and the topology generation of competitive Hebbian
learning (Martinetz and Schulten, 1991) are combined to a new model. Starting
with very few units new units are inserted successively. To determine where to
insert new units, local error measures are gathered during the adaptation process.
Each new unit is inserted near the unit which has accumulated most error. The
complete growing neural gas algorithm is the following:

1. Initialize the set A to contain two units ¢; and cs
A= {c1, ca} (5.25)

with reference vectors chosen randomly according to p(€).

Initialize the connection set C , C C A x A, to the empty set:

c=0. (5.26)

2. Generate at random an input signal & according to p(€).
3. Determine the winner s; and the second-nearest unit s (s1,$2 € A) by
51 = arg min,c 4]|€ - we (5.27)

and
82 = arg min ¢ 4\ (5,3 1€ — We- (5.28)

26 CHAPTER 5. SCL W/O FIXED NETWORK DIMENSIONALITY

s .h‘: o, lee
.’ < % ‘:: .
‘h . "
‘o‘ Ne
1:;' .y @

. e

* &g":f';:&

a) 0 signals b) 100 signals ¢) 300 signals d) 1000 signals

PTG AR
L/

e) 2500 signals f) 10000 signals g) 40000 signals h) Voronoi regions

Figure 5.5: Neural gas with competitive Hebbian learning simulation sequence for
a ring-shaped uniform probability distribution. a) Initial state. b-f) Intermediate
states. g) Final state. h) Voronoi tessellation corresponding to the final state. The
centers move according to the neural gas algorithm. Additionally, however, edges
are created by competitive Hebbian learning and removed if they are not “refreshed”
for a while.

STvaTe
AR

a) b) c)

Figure 5.6: Neural gas with competitive Hebbian learning simulation results after
40000 input signals for three different probability distributions (described in the
caption of figure 4.4).

5.4. GROWING NEURAL GAS 27

4. If a connection between s; and ss does not exist already, create it:

C=CU {(81, 82)}. (529)
Set the age of the connection between s; and sy to zero (“refresh” the edge):
age(s, s;) = 0- (5.30)

5. Add the squared distance between the input signal and the winner to a local
error variable:
AES1 = ”E - w51||2' (531)

6. Adapt the reference vectors of the winner and its direct topological neighbors
by fractions ¢, and €,, respectively, of the total distance to the input signal:
Aw,, = e(§—ws,) (5.32)
Aw; = €n(£ — Wz) (Vl S NSI). (533)
Thereby Ny, (see equation 2.5) is the set of direct topological neighbors of s;.
7. Increment the age of all edges emanating from si:
age (s, i) = ALe(s, i) + 1 (Vi € Ng,). (5.34)

8. Remove edges with an age larger than a,,4.. If this results in units having no
more emanating edges, remove those units as well.

9. If the number of input signals generated so far is an integer multiple of a
parameter A, insert a new unit as follows:

¢ Determine the unit ¢ with the maximum accumulated error:
q = arg max ¢ 4Ec. (5.35)
e Determine among the neighbors of ¢ the unit f with the maximum ac-

cumulated error:
f = arg max.¢ v, Ee. (5.36)
e Add a new unit r to the network and interpolate its reference vector from
q and f.
A=AU{r}, w, = (Wg +wyg)/2. (5.37)
e Insert edges connecting the new unit » with units ¢ and f, and remove
the original edge between ¢ and f:

C:CU{(,’"Q)a (’r’f)}a C:C\{(qaf)} (538)
e Decrease the error variables of ¢ and f by a fraction a:
AE, = —aEg, AE¢ = —aEy. (5.39)

e Interpolate the error variable of » from ¢ and f:
E, = (E, +Ef)/2. (5.40)
10. Decrease the error variables of all units:
AE. = -8 E, (Ve e A). (5.41)
11. If a stopping criterion (e.g., net size or some performance measure) is not yet
fulfilled continue with step 2.

Figure 5.7 shows some stages of a simulation for a simple ring-shaped data
distribution. Figure 5.8 displays the final results after 40000 adaptation steps for
three other distribution. The parameters used in both simulations were: A = 300,
e» = 0.05, €, = 0.0006, o = 0.5, 8 = 0.0005, @par = 88.

28 CHAPTER 5. SCL W/O FIXED NETWORK DIMENSIONALITY

a) 051gnals b) 10081gnals c) 300 signals d) 1000 signals

@ 2e

e) 2500 signals f) 10000 signals g) 40000 signals h) Voronoi regions

Figure 5.7: Growing neural gas simulation sequence for a ring-shaped uniform
probability distribution. a) Initial state. b-f) Intermediate states. g) Final state.
h) Voronoi tessellation corresponding to the final state. The maximal network size
was set to 100.

Soe
Yo%
4

)
S

5

a) b) c)

Figure 5.8: Growing neural gas simulation results after 40000 input signals for three
different probability distributions (described in the caption of figure 4.4).

5.5. OTHER METHODS 29

5.5 Other Methods

Several other models without a fixed network dimensionality are known. DeSieno
(1988) proposed a method where frequent winners get a “bad conscience” for win-
ning so often and, therefore, add a penalty term to the distance from the input
signal. This leads eventually to a situation where each unit wins approximately
equally often (entropy maximization).

Kangas et al. (1990) proposed to use the minimum spanning tree among the
units as neighborhood topology to eliminate the a priori choice for a topology in
some models.

Some other methods have been proposed.

Chapter 6

Soft Competitive Learning
with Fixed Network
Dimensionality

In this chapter methods from the area of soft competitive learning are described
which have a network of a fixed dimensionality & which has to be chosen in advance.
One advantage of a fixed network dimensionality is that such a network defines
a mapping from the n-dimensional input space (with n being arbitrarily large)
to the k-dimensional structure. This makes it possible to get a low-dimensional
representation of the data which may be used for visualization purposes.

6.1 Self-organizing Feature Map

This model stems from Kohonen (1982) and builds upon earlier work of Willshaw
and von der Malsburg (1976). The model is similar to the (much later developed)
neural gas model (see 5.1) since a decaying neighborhood range and adaptation
strength are used. An important difference, however, is the topology which is
constrained to be a two-dimensional grid (a;;) and does not change during self-
organization.

The distance on this grid is used to determine how strongly a unit r = ag, is
adapted when the unit s = a;; is the winner. The distance measure is the Li-norm
(a.k.a. “Manhattan distance”):

di(r,s) =i — k| + |5 —m| for r = agm and s = a;;. (6.1)

Ritter et al. (1991) propose to use the following function to define the relative
strength of adaptation for an arbitrary unit r in the network (given that s is the
winner):

o _dl(rv 3)2
hrs = exp(T). (6.2)
Thereby, the standard deviation o of the Gaussian is varied according to
o(t) = oilo/ai)/tme (6.3)

for a suitable initial value o; and a final value o¢. The complete self-organizing
feature map algorithm is the following:

1. Initialize the set A to contain N = Ny - Ny units ¢;
.AZ{Cl, C2,y ..., CN} (64)

30

6.2. GROWING CELL STRUCTURES 31

with reference vectors w,, € R" chosen randomly according to p(&).
Initialize the connection set C to form a rectangular N; x Ns grid.

Initialize the time parameter ¢:
t=0. (6.5)

2. Generate at random an input signal & according to p(€).

3. Determine the winner s(§) = s:

s(§) = arg min e 4(|€ — wel|- (6.6)

4. Adapt each unit r according to

Aw, = €(t) hrs(€ — W;) (6.7)
whereby
o(t) = oi(os/0i)" me (6.8)
and
e(t) = ei(ef /)t tmox. (6.9)

5. Increase the time parameter ¢:

t=t+1. (6.10)

6. If t < tmax continue with step 2.

Figure 6.1 shows some stages of a simulation for a simple ring-shaped data
distribution. Figure 6.2 displays the final results after 40000 adaptation steps for
three other distribution. The parameters were o; = 3.0, 0y = 0.1, ¢; = 0.5, ¢y =
0.005, tmax = 10000 and Ny = Ny = 10.

6.2 Growing Cell Structures

This model (Fritzke, 1994a) is rather similar to the growing neural gas model.
The main difference is that the network topology is constrained to consist of k-
dimensional simplices whereby & is some positive integer chosen in advance. The
basic building block and also the initial configuration of each network is a k-
dimensional simplex. This is, e.g., a line for k=1, a triangle for k=2, and a tetra-
hedron for k=3.

For a given network configuration a number of adaptation steps are used to
update the reference vectors of the nodes and to gather local error information at
each node.

This error information is used to decide where to insert new nodes. A new node
is always inserted by splitting the longest edge emanating from the node ¢ with
maximum accumulated error. In doing this, additional edges are inserted such that
the resulting structure consists exclusively of k-dimensional simplices again.

The growing cell structures learning procedure is described in the following:

TCompared to the original growing cell structures algorithm described by Fritzke (1994a) slight
changes and simplifications have been done regarding the re-distribution of accumulated error.
Moreover, the discussion of removal of units has been left out completely for sake of brevity.

32 CHAPTER 6. SCL WITH FIXED NETWORK DIMENSIONALITY

e) 2500 signals f) 10000 signals g) 40000 signals h) Voronoi regions

Figure 6.1: Self-organizing feature map simulation sequence for a ring-shaped uni-
form probability distribution. a) Initial state. b-f) Intermediate states. g) Final
state. h) Voronoi tessellation corresponding to the final state. Large adaptation
rates in the beginning as well as a large neighborhood range cause strong initial
adaptations which decrease towards the end.

Figure 6.2: Self-organizing feature map simulation results after 40000 input signals
for three different probability distributions (described in the caption of figure 4.4).

6.2. GROWING CELL STRUCTURES 33

1. Choose a network dimensionality k.

Initialize the set A to contain k + 1 units ¢;
AZ {Cl, C2y «uny ck+1} (6.11)

with reference vectors w., € R" chosen randomly according to p(&).

Initialize the connection set C, C C A x A such that each unit is connected to
each other unit, i.e., such that the network has the topology of a k-dimensional
simplex.

2. Generate at random an input signal & according to p(€).

3. Determine the winner s:
5(€) = arg minc 4]l€ — wel|. (6.12)

4. Add the squared distance? between the input signal and the winner unit s to
a local error variable E:
AE; = [|& — w,|*. (6.13)

5. Adapt the reference vectors of s and its direct topological neighbors towards
£ by fractions ¢, and ¢,, respectively, of the total distance:

Aw, = ¢(&—ws) (6.14)
Aw; €n(£ — Wz) (Vl S NS) (615)

Thereby, we denote with N, the set of direct topological neighbors of s.

6. If the number of input signals generated so far is an integer multiple of a
parameter)\, insert a new unit as follows:

¢ Determine the unit ¢ with the maximum accumulated error:
¢ = arg max,c 4 Fe. (6.16)

e Insert a new unit » by splitting the longest edge emanating from ¢, say
an edge leading to a unit f. Insert the connections (¢,7) and (r, f) and
remove the original connection (g, f). To re-build the structure such that
it again consists only of k-dimensional simplices, the new unit r is also
connected with all common neighbors of ¢ and f, i.e., with all units in
the set Ny N Ny.

o Interpolate the reference vector of r from the reference vectors of ¢ and
f:
w, = (Wq +Wwy)/2. (6.17)

e Decrease the error variables of all neighbors of » by a fraction which
depends on the number of neighbors of r:

[0

AE; = ———F,
[N

(Vi € N,.). (6.18)

?Depending on the problem at hand also other local measures are possible, e.g. the number
of input signals for which a particular unit is the winner or even the positioning error of a robot
arm controlled by the network. The local measure should generally be something which one is
interested to reduce and which is likely to be reduced by the insertion of new units.

34 CHAPTER 6. SCL WITH FIXED NETWORK DIMENSIONALITY

o Set the error variable of the new unit r to the mean value of its neighbors:

1
E,=— Y Ei. (6.19)
[N | ;

7. Decrease the error variables of all units:

AE.= —BE. (Vce€ A). (6.20)

8. If a stopping criterion (e.g., net size or some performance measure) is not yet
fulfilled continue with step 2.

Figure 6.3 shows some stages of a simulation for a simple ring-shaped data
distribution. Figure 6.4 displays the final results after 40000 adaptation steps for
three other distribution. The parameters used in both simulations were: a =
1.0, &, = 0.06, £, = 0.002, 8 = 0.0005, A = 200.

6.3 Growing Grid

Growing grid is another incremental network. The basic principles used also in
growing cell structures and growing neural gas are applied with some modifications
to a rectangular grid. Alternatively, growing grid can be seen as an incremental
variant of the self-organizing feature map.

The model has two distinct phases, a growth phase and a fine-tuning phase.
During the growth phase a rectangular network is built up starting from a minimal
size by inserting complete rows and columns until the desired size is reached or until
a performance criterion is met. Only constant parameters are used in this phase. In
the fine-tuning phase the size of the network is not changed anymore and a decaying
learning rate is used to find good final values for the reference vectors.

As for the self-organizing map, the network structure is a two-dimensional grid
(aij)- This grid is initially set to 2 x 2 structure. Again, the distance on the grid is
used to determine how strongly a unit » = ag,, is adapted when the unit s = a;; is
the winner. The distance measure used is the Li-norm

di(r,s) =i — k| + |j —m| for r = agm and s = a;;. (6.21)

Also the function used to determine the adaptation strength for a unit » given
that s is the winner is the same as for the self-organizing feature map:

—di(r,s)?

5r) (6.22)

hrs = exp(
The width parameter o, however, remains constant throughout the whole sim-
ulation. It is chosen relatively small compared to the values usually used at the
beginning for the self-organizing feature map. One can note that as the growing
grid network grows, the fraction of all units which is adapted together with the
winner decreases. This is also the case in the self-organizing feature map but is
achieved there with a constant network size and a decreasing neighborhood width.
The complete growing grid algorithm is the following:

Growth Phase

1. Set the initial network width and height:

Ny =2, Npy=2. (6.23)

6.3. GROWING GRID 35

.

a) 0 signals b) 100 signals

e) 2500 signals f) 10000 signals g) 40000 signals h) Voronoi regions

Figure 6.3: Growing cell structures simulation sequence for a ring-shaped uniform
probability distribution. a) Initial state. b-f) Intermediate states. g) Final state. h)
Voronoi tessellation corresponding to the final state. Per construction the network
structure always consists of hypertetrahedrons (triangles in this case).

Figure 6.4: Growing cell structures simulation results after 40000 input signals for
three different probability distributions (described in the caption of figure 4.4).

36 CHAPTER 6. SCL WITH FIXED NETWORK DIMENSIONALITY

Initialize the set A to contain N = Ny - Ny units ¢;
.A= {01, C2,y ..., CN} (6.24)

with reference vectors w., € R" chosen randomly according to p(&).
Initialize the connection set C to form a rectangular N7 x No grid.

Initialize the time parameter ¢:
t=0. (6.25)

2. Generate at random an input signal & according to p(§).

3. Determine the winner s(§) = s:
5(§) = arg min g 4(|& — wel|. (6.26)

4. Increase a local counter variable of the winner:

Ts = Ts + 1. (6.27)
5. Increase the time parameter ¢:
t=t+1. (6.28)
6. Adapt each unit r according to
Aw, = €(t) hrs(§ — wr) (6.29)
whereby
e(t) = €. (6.30)

7. If the number of input signals generated for the current network size reaches
a multiple Ay of this network size, i.e., if

)\g -Ny-Ny=t (6.31)
then do the following:

e Determine the unit q with the largest value of 7:
¢ = arg MaX,c 4 Te- (6.32)

o Determine the direct neighbor f of ¢ with the most distant reference
vector:
f = arg maxey, |y — wel|. (6.33)
e Depending on the relative position of ¢ and f continue with one of the
two following cases:

Case 1: ¢ and f are in the same row of the grid, i.e.
q = Q4,5 and (f = Qj,j+1 Or f = ai,]-_l). (634)

Do the following:
— Insert a new column with N; units between the columns of ¢ and
f.
— Interpolate the reference vectors of the new units from the refer-
ence vectors of their respective direct neigbors in the same row.

6.3. GROWING GRID

— Adjust the variable for the number of columns:

No = Ny + 1.

Case 2: q and f are in the same column of the grid, i.e.

q=a;; and (f = aiy1,5 or f = ai-1,5)-

Do the following:

37

(6.35)

(6.36)

— Insert a new row with Ns units between the rows of ¢ and f.

— Interpolate the reference vectors of the new units from the ref-
erence vectors of their respective direct neigbors in the same

columns.

— Adjust the variable for the number of rows:

Ny =N+ 1.
e reset all local counter values:
T.=0 (Vee A).

e reset the time parameter:
t=0.

8. If the desired network size is not yet achieved, i.e. if
Ni - Ny < Npjins
then continue with step 2.

Fine-tuning Phase

9. Generate at random an input signal & according to p(€).

10. Determine the winner s(§) = s:
s(&) = arg min ¢ 4[|§ — W/l
11. Adapt each unit r according to
Aw, = €(t) hyrs(€ — Wy)

whereby
e(t) = €o(e1/eq)"/ "™
with
tmax = N1 - Ny - Ag.

12. If t < tmax continue with step 9.

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

Figure 6.5 shows some stages of a simulation for a simple ring-shaped data
distribution. Figure 6.6 displays the final results after 40000 adaptation steps for
three other distribution. The parameters used for the growth phase were: \; =
30, 0 = 0.7,¢9 = 0.005. The parameters for the fine-tuning phase were: ¢ and ¢

unchanged, €1 = 0.005, Ay = 100, Npin = 100.

If one compares the growing grid algorithm with the other incremental methods
growing cell structures and growing neural gas then a difference (apart from the
topology) is that no counter variables are redistributed when new units are inserted.
Instead, all 7-values are set to zero after a row or column has been inserted. This

38 CHAPTER 6. SCL WITH FIXED NETWORK DIMENSIONALITY

a) 0 signals b) 100 signals ¢) 300 signals d) 1000 signals

()
O
/%‘ / 3

f/l O 3
L X s, o

o e ey

, %

L

‘8

)
e 2lie
e

L
S e
i /@/
"

e) 2500 signals f) 10000 signals g) 40000 signals h) Voronoi regions

Figure 6.5: Growing grid simulation sequence for a ring-shaped uniform probability
distribution. a) Initial state. b-f) Intermediate states. g) Final state. h) Voronoi
tessellation corresponding to the final state.

Figure 6.6: Growing grid simulation results after 40000 input signals for three
different probability distributions (described in the caption of figure 4.4). One can
note that in a) the chosen topology (4 x 26) has a rather extreme height/width
ratio which matches well the distribution at hand. Depending on initial conditions
however, also other topologies occur in simulations for this distribution. b),c) Also
these topologies deviate from the square shape usually given to self-organizing maps.
For the cactus a (7 x 15) and for the mixture distribution a (9 x 12) topology was
automatically selected by the algorithm.

6.4. OTHER METHODS 39

means, that all statistical information about winning frequencies is discarded after
an insertion. Therefore, to gather enough statistical evidence where to insert new
units the next time, the number of adaptation steps per insertion step must be
proportional to the network size (see equation 6.31). This simplifies the algorithm
but increases the computational complexity. The same could in principle be done
with growing neural gas and growing cell structures effectively eliminating the need
to re-distribute accumulated information after insertions at the price of increased
computational complexity.

The parameter ¢ which governs the neighborhood range has the function of a
regularizer. If it is set to large values, then neighboring units are forced to have
rather similar reference vectors and the layout of the network (when projected to
input space) will appear very regular but not so well adapted to the underlying data
distribution p(&). Smaller values for o give the units more possibilities to adapt
independently from each other. As o is set more and more to zero the growing grid
algorithm (apart from the insertions) approaches hard competitive learning.

Similar to the self-organizing feature map the growing grid algorithm can easily
be applied to network structures of other dimensions than two. Actually useful,
however, seem only the cases of one- and three-dimensional networks since networks
of higher dimensionality can not be visualized easily.

6.4 Other Methods

A number of other methods with a fixed dimensionality exist. Bauer and Villmann
(1995) proposed a method which develops a hypercubical grid. In contrast to the
growing grid method their algorithm automatically determines a suitable dimen-
sionality for the grid.

Blackmore and Miikkulainen (1992) let a irregular network grow on positions
in the plane which are restricted to lie on a two-dimensional grid. Rodrigues and
Almeida (1990) increased the speed of the normal self-organizing feature map by
developing an interpolation method which symmetrically increases the number of
units in the network by interpolation. Their method is reported to give a consid-
erable speed-up but is not able to choose, e.g., different dimensions for width and
height of the grid as the approach of Bauer and Villmann (1995) or the growing grid.
Further approaches have been proposed, e.g. by Jokusch (1990) and Xu (1990).

Chapter 7

Quantitative Results (t.b.d.)

40

Chapter 8

Discussion (t.b.d.)

41

Bibliography

H.-U. Bauer and K. Pawelzik. Quantifying the neighborhood preservation of self-
organizing feature maps. IEEE Transactions on Neural Networks, 3(4):570-579,
1992.

H.-U. Bauer and T. Villmann. Growing a hypercubical output space in a self-
organizing feature map. Tr-95-030, International Computer Science Institute,
Berkeley, 1995.

J. Blackmore and R. Miikkulainen. Incremental grid growing: encoding high-
dimensional structure into a two-dimensional feature map. TR AI92-192, Uni-
versity of Texas at Austin, Austin, TX, 1992.

C. Darken and J. Moody. Fast adaptive k-means clustering: Some empirical results.
In Proc. IJCNN, volume II, pages 233-238. IEEE Neural Networks Council, 1990.

D. DeSieno. Adding a conscience to competitive learning. In IEEE International
Conference on Neural Networks, volume 1, pages 117-124, New York, 1988. (San
Diego 1988) IEEE.

E. Forgy. Cluster analysis of multivariate data: efficiency vs. interpretanility of
classifications. Biometrics, 21:768, 1965. abstract.

B. Fritzke. Growing cell structures — a self-organizing network for unsupervised and
supervised learning. Neural Networks, 7(9):1441-1460, 1994a.

B. Fritzke. Fast learning with incremental RBF networks. Neural Processing Letters,
1(1):2-5, 1994b.

B. Fritzke. A growing neural gas network learns topologies. In G. Tesauro, D. S.
Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing
Systems 7, pages 625-632. MIT Press, Cambridge MA, 1995a.

B. Fritzke. Incremental learning of local linear mappings. In F. Fogelman and
P. Gallinari, editors, ICANN’95: International Conference on Artificial Neural
Networks, pages 217-222, Paris, France, 1995b. EC2 & Cie.

B. Fritzke. The LBG-U method for vector quantization - an improvement over LBG
inspired from neural networks. Neural Processing Letters, 5(1), 1997.

R. M. Gray. Vector quantization. IEEE ASSP Magazine, 1:4-29, 1984.

R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Press,
1992.

A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice Hall, 1988.

42

BIBLIOGRAPHY 43

S. Jokusch. A neural network which adapts its structure to a given set of patterns.
In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing in
Neural Systems and Computers, pages 169-172. Elsevier Science Publishers B.V.,
1990.

J. A. Kangas, T. Kohonen, and T. Laaksonen. Variants of self-organizing maps.
IEEE Transactions on Neural Networks, 1(1):93-99, 1990.

S. Kirkpatrick, C. D. G. Jr., , and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220, 1983.

T. Kohonen. Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics, 43:59-69, 1982.

Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design. IEEE
Transactions on Communication, COM-28:84-95, 1980.

S. P. Lloyd. Least squares quantization in pcm. technical note, Bell Laboratories,
1957. published in 1982 in IEEE Transactions on Information Theory.

J. MacQueen. On convergence of k-means and partitions with minimum average
variance. Ann. Math. Statist., 36:1084, 1965. abstract.

J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. volume 1 of Proceedings of the Fifth Berkeley Symposium on Mathematical
statistics and probability, pages 281-297, Berkeley, 1967. University of California
Press.

T. M. Martinetz. Competitive Hebbian learning rule forms perfectly topology pre-
serving maps. In ICANN’93: International Conference on Artificial Neural Net-
works, pages 427-434, Amsterdam, 1993. Springer.

T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. Neural-gas network for vector
quantization and its application to time-series prediction. IEEE Transactions on
Neural Networks, 4(4):558-569, 1993.

T. M. Martinetz, H. J. Ritter, and K. J. Schulten. 3D-neural-network for learning
visuomotor-coordination of a robot arm. In International Joint Conference on
Neural Networks, pages 11.351-356, Washington DC, 1989.

T. M. Martinetz and K. J. Schulten. A “neural-gas” network learns topologies. In
T. Kohonen, K. Mikisara, O. Simula, and J. Kangas, editors, Artificial Neural
Networks, pages 397-402. North-Holland, Amsterdam, 1991.

T. M. Martinetz and K. J. Schulten. Topology representing networks. Neural
Networks, 7(3):507-522, 1994.

J. E. Moody and C. Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation, 1:281-294, 1989.

S. M. Omohundro. The Delaunay triangulation and function learning. Tr-90-001,
International Computer Science Institute, Berkeley, 1990.

F. P. Preparata and M. I. Shamos. Computational geometry. Springer, New York,
1990.

H. J. Ritter, T. M. Martinetz, and K. J. Schulten. Neuronale Netze. Addison-Wesley,
Miinchen, 1991.

44 BIBLIOGRAPHY

J. S. Rodrigues and L. B. Almeida. Improving the learning speed in topological
maps of patterns. In Proceedings of INNC, pages 813-816, Paris, 1990.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-
tions by error propagation. In R. D. E. and J. L. McClelland, editors, Parallel
Distributed Processing, volume 1, pages 318-362. MIT Press, Cambridge, 1986.

T. Villmann, R. Der, M. Herrmann, and T. Martinetz. Topology presevation in self-
organizing feature maps: exact definition and measurement. IEEE TNN, 1994.
submitted.

J. Walter, H. J. Ritter, and K. J. Schulten. Non-linear prediction with self-organizing
maps. In International Joint Conference on Neural Networks, pages [.589-594,
San Diego, 1990.

D. J. Willshaw and C. von der Malsburg. How patterned neural connections can be
set up by self-organization. In Proceedings of the Royal Society London, volume
B194, pages 431-445, 1976.

L. Xu. Adding learning expectation into the learning procedure of self-organizing
maps. Int. Journal of Neural Systems, 1(3):269-283, 1990.

